n^2+301n-7650=0

Simple and best practice solution for n^2+301n-7650=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for n^2+301n-7650=0 equation:



n^2+301n-7650=0
a = 1; b = 301; c = -7650;
Δ = b2-4ac
Δ = 3012-4·1·(-7650)
Δ = 121201
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(301)-\sqrt{121201}}{2*1}=\frac{-301-\sqrt{121201}}{2} $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(301)+\sqrt{121201}}{2*1}=\frac{-301+\sqrt{121201}}{2} $

See similar equations:

| n²+301n-7650=0 | | 5(2x+3)=2(x-2)+5 | | -14+3n=n+14= | | 5h-230=3h+70 | | 225+8x=11x | | 6-3m=3m | | 5x^2-81=2x² | | 7y-42=7 | | u/2+11=31 | | |5a+4|=|5a-10| | | 65×15+x=195 | | 1.732050808x=3 | | 1.7x=3 | | x1.7=3 | | 2(y+1)–1=3 | | 11x+15=71 | | 2(m+1)–1=6 | | 9=2d+7 | | 3x+5=62-5x | | 4(y+5)=y+ | | (25x^2)+3x=0 | | 15=(7^3-2x) | | 6n+4n=20+5n | | 6m²-8m+16m=2 | | 2n+3n=8n-3 | | 6(3x+2)-5(6x-1)=2(x-8)-5(7x-1) | | –2(w+12)=–20 | | X•y=52 | | 4*c=24 | | X=2/4x+56*4/2 | | −2÷5+2÷3w=−32 | | 8x-22=0 |

Equations solver categories